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EXECUTIVE SUMMARY 

The idea of deploying electric vehicles and unmanned aerial vehicles (UAVs), also known as 
drones, to perform "last-mile" delivery in logistics operations has attracted increasing attention in 
the past few years. In this paper, an electric vehicle travelling salesman problem with drone 
(EVTSP-D) is formulated as a mixed-integer/linear program to aid logistics organizations with a 
new method of delivering parcels which can extend the driving range of both vehicles, exploit 
their advantages and reduce the operation cost. An iterative heuristic algorithm with different 
search strategies is also developed, which can solve an instance with 25 customers. Results of 
numerical experiments show that the heuristic is much more efficient than ILOG CPLEX solver 
and incorporating UAVs into EV-based routing was found to reduce average delivery times by 
up to 40% for the instances tested. A real-world case study on the Austin network along with the 
sensitivity analysis of different parameters is also conducted and presented and the results 
indicate that UAV speed has a greater effect on delivery time compared to UAV operation limit 
and EV driving range. 
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Electric Vehicle Travelling Salesman Problem with Drone 

The idea of deploying electric vehicles and unmanned aerial vehicles (UAVs), also known as 
drones, to perform "last-mile" delivery in logistics operations has attracted increasing attention 
in the past few years. In this paper, an electric vehicle travelling salesman problem with drone 
(EVTSP-D) is formulated as a mixed-integer/linear program to aid logistics organizations with 
a new method of delivering parcels which can extend the driving range of both vehicles, exploit 
their advantages and reduce the operation cost. An iterative heuristic algorithm with di˙erent 
search strategies is also developed, which can solve an instance with 25 customers. Results 
of numerical experiments show that the heuristic is much more eÿcient than ILOG CPLEX 
solver and incorporating UAVs into EV-based routing was found to reduce average delivery 
times by up to 40% for the instances tested. A real-world case study on the Austin network 
along with the sensitivity analysis of di˙erent parameters is also conducted and presented and 
the results indicate that UAV speed has a greater e˙ect on delivery time compared to UAV 
operation limit and EV driving range. 

Key words: Traveling Salesman, Electric vehicle, Unmanned aerial vehicle, Transportation 
logistics 

I. Introduction 

In the United States, the transportation sector generates 28.9% of the national greenhouse gas emissions (EPA, 
2018). Many local governments and corporate policies aim to promote transportation modes with lower emissions of 
pollution and greenhouse gases. Electric vehicles (EVs) are an emerging alternative to internal combustion engines, and 
several companies have started to use EVs in their operations. For example, in 2018, FedEx announced a feet expansion 
and added 1,000 electric delivery vehicles to operate commercial and residential pick-up and delivery services in the 
United States (FedEx, 2018). Switching to electric feets not only has long-term e˙ects on mitigating the impact of 
climate change but may also have immediate fnancial benefts, as fuel cost accounts for 39% to 60% of operating costs 
in the trucking sector (Sahin et al., 2009). Compared to conventional internal combustion engines and petroleum-fuel 
powered vehicles, EVs are much more energy-eÿcient and require less maintenance, which indicates potential savings 
to freight and logistics companies (Howey et al., 2011, Ma et al., 2012). 

Another new trend in recent years is the integration of UAVs into the operation of e-commerce and on-demand item 
delivery. The use of UAVs for "last-mile" parcel delivery promises to change the landscape of the logistics industry. 
Amazon, Google, DHL all announced plans to use UAVs to deliver small packages, and Google has conducted thousands 
of test fights in Australia. The past few years have witnessed a dramatic increase in UAV applications (DroneZon, 
2019). According to Teal Group’s prediction, commercial use of UAVs will grow eightfold over the decade to reach US 
$7.3 billion in 2027 (Teal Group, 2018). 

However, EVs and UAVs have limited range and require access to recharging stations. A commercial UAV has a 
range of about only 10 miles. Because it has a relatively small service area, distribution centers are needed to aid UAV 
delivery (Chauhan et al., 2019, Hong et al., 2018, Hoareau et al., 2017). For the most common EVs used in service 
operations, the minimum charging time is 0.5 h, and the battery capacity is around 22 kWh, which indicates a nominal 
driving range of 142 km, approximately one-fourth of a petroleum-powered vehicle (Pelletier et al., 2017). Moreover, 
the driving range is also a˙ected by road slope, driving speed, loading capacity, and the use of peripherals (De Cauwer 
et al., 2015). Although this problem could be alleviated in the future by carrying higher-capacity batteries, at present, an 
EV may need to visit charging stations to charge its battery and extend its driving range. 

In this paper, we investigate a new problem called the electric vehicle traveling salesman problem with drone 
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(EVTSP-D), where an electric truck performs deliveries with a UAV in a cooperative way. In this problem, the EV and 
the UAV could perform delivery tasks simultaneously. The EV serves as the UAV hub, where the UAV can refresh its 
battery and be loaded with new parcels. Due to driving range limits, EV may need to visit multiple charging stations 
between customer visits during its daily operation. Note that some charging stations may be visited multiple times, 
while others may not be visited at all. There are two key di˙erences between this research and recent work on the fying 
sidekick traveling salesman problem (Murray and Chu, 2015). We model EV and associated battery range constraints 
and recharging whereas Murray and Chu (2015) model a regular truck. Another key assumption in this problem, the 
other source of distinction from Murray and Chu (2015), is that the EV and the UAV share their electricity, that is, there 
is a battery capacity for both EV and UAV, and when the UAV is launched from the EV, the remaining electricity of EV 
also decreases. The main contributions of the paper are: 

• The EVTSP-D is introduced and formulated; 
• An eÿcient heuristic algorithm is proposed to solve EVTSP-D; 
• Computational experiments demonstrate the improvement of delivery time by utilizing a UAV; 
• The numerical analyses indicate the proposed heuristic can obtain good solutions in a much shorter time than a 
commercial solver; 

• The real-world case study illustrates that the proposed heuristic is capable of solving EVTSP-D of practical size 
within minutes. 

The rest of the paper is organized as follows. A literature review of EVRP and UAV is given in Section 2, focusing 
on current approaches of using EV and UAV to perform delivery tasks. The problem description of EVTSP-D and its 
mixed-integer linear programming (MILP) formulation are shown in Section 3. An eÿcient iterative heuristic algorithm 
is proposed in Section 4. Section 5 presents computational experiments on random instances, performance comparisons 
with a commercial solver and a real-world case study. The conclusion and future research are presented in Section 6. 

II. Literature Review 

The vehicle routing problem (VRP) and the traveling salesman problem (TSP), are among the most well-studied 
optimization problems in operations research. This problem was frst proposed by Dantzig and Ramser (1959). Since 
then, many variants have been considered, incorporating service time windows, capacities, maximum route lengths, 
distinguishing pickups and deliveries, feet inhomogeneities, and so forth. Various exact and heuristic methods have 
been proposed to solve the problem (Baldacci et al., 2012, Laporte, 2009, Desaulniers et al., 2010, Osman, 1993, 
Gendreau et al., 1992). Braekers et al. (2016), Montoya-Torres et al. (2015), Pillac et al. (2013), Toth and Vigo (2014), 
Eksioglu et al. (2009), Golden et al. (2008), Toth and Vigo (2002) provide a thorough literature review of VRP variants 
and solution algorithm families. 

Erdo§an and Miller-Hooks (2012) introduced the green vehicle routing problem (G-VRP), where the goal is to 
route a feet of Alternative Fueled Vehicles (AFV) to serve a set of customer’s within a time limit while respecting 
the driving range of the vehicles. The AFVs are allowed to extend their driving range by visiting refueling stations 
more than once. Conrad and Figliozzi (2011) developed the recharging vehicle routing problem where vehicles can 
recharge at particular customer locations. Conrad and Figliozzi (2011) also considered customer time windows and feet 
capacity constraints. Schneider et al. (2014) also modeled customer time windows and feet capacity constraints in 
Electric VRP (E-VRP) problem while making the recharging times dependent on the remaining charge levels. Montoya 
et al. (2017) extended the previous E-VRP models to consider nonlinear charging functions by using piecewise linear 
approximations. The solution methods for E-VRP variants are diverse and range from exact methods such as branch 
and bound, branch and cut (Koç and Karaoglan, 2016), and branch and price (Schneider et al., 2014, Hiermann et al., 
2016); heuristic methods such as modifed savings method of Clarke and Wright with density-based clustering (Erdo§an 
and Miller-Hooks, 2012), local improvement based on neighborhood swap (Schneider et al., 2014, Masmoudi et al., 
2018), and metaheuristics such as simulated annealing and tabu search (Keskin and Çatay, 2016, Goeke and Schneider, 
2015, Felipe et al., 2014). Pelletier et al. (2017) and Erdeli¢ and Cari¢ (2019) provide a comprehensive survey of the 
di˙erent variants of the electric vehicle routing problem and associated solution algorithms. Unlike the above-mentioned 
research, this paper focuses on the traveling salesman variant. Doppstadt et al. (2016) formulated the traveling salesman 
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problem for hybrid electric vehicles considering four modes of operation - combustion, electric, charging, and boost. 
An iterated tabu search with local search operators which switches route structure, as well as operating modes, was used 
to solve real-world instances. Doppstadt et al. (2019) extend Doppstadt et al. (2016)’s model by considering customer 
time windows, and proposed a new variable neighborhood search based solution method. Liao et al. (2016) provided 
an eÿcient dynamic programming based polynomial-time algorithm for the electric vehicle shortest travel time path 
problem and approximation algorithms for the EV touring problems. The algorithms incorporated battery capacity 
constraints and battery swaps. Roberti and Wen (2016) provided a mixed-integer linear programming formulation 
for the electric vehicle traveling salesman problem with time windows for both full and partial recharge policies. A 
three-phase heuristic employing variable neighborhood descent to reach time window feasibility and minimize cost tour 
and a dynamic programming algorithm to achieve feasibility concerning battery capacities is developed. While there 
has been a signifcant amount of work on E-VRP and TSP, none of them have considered an integrated delivery system 
with drones. 

Meanwhile, an increasing number of studies investigate the eÿciency of delivery systems that deploy UAVs. Otto 
et al. (2018) provide a detailed review of the various civil applications of drones in domains such as agriculture, 
monitoring, transport, security, etc. Murray and Chu (2015) introduced the fying sidekick traveling salesman problem 
(FSTSP) which assumes that a truck can launch its UAV at the depot or customer node and remains on its route, 
while the UAV delivers one small parcel to another customer before meeting again at a rendezvous location (another 
customer node on the truck’s route). Murray and Chu (2015) proposed a two-stage route and reassign heuristic wherein 
the frst stage a truck TSP tour which visits all customers is determined. In the second stage, select customers are 
reassigned to UAV based on cost savings. Murray and Chu (2015) also introduced the parallel drone scheduling 
Traveling Salesman Problem (PDSTSP), where multiple drones and a truck originating from a depot serve a set of 
customers. In the PDSTSP heuristic, customers are partitioned into those that can be served by UAVs, and the remaining 
customers are assumed to be served by truck. A parallel machine scheduling problem is solved to determine customer 
assignments to drones. A swap-based heuristic is used to exchange customers from UAV and truck partitions to improve 
the solution. Mbiadou Saleu et al. (2018) developed an iterative two-stage heuristic involve customer partitioning and 
routing optimization for the PDSTSP. Agatz et al. (2018) developed an integer programming formulation for a variant of 
FSTSP called Traveling Salesman Problem with Drones (TSPD) and a "route-frst, cluster-second" heuristic which 
constructs a TSP with drone tour from a TSP tour. A subtle di˙erence between FSTSP and TSPD is that in FSTSP, the 
drone departs from a truck at a node and joins the truck at a di˙erent node whereas in TSPD, the truck can wait at a 
node and the drone can rejoin the truck at the same node it departed from. Note that several authors have used TSPD 
while referring to FSTSP. Ha et al. (2018) studied a variant of Murray and Chu (2015) with the objective of minimizing 
operating and waiting time costs rather than completion time. The authors propose two heuristics - a modifcation of 
Murray and Chu (2015)’s heuristic to minimizing costs and Greedy Randomized Adaptive Search Procedure (GRASP). 
Es Yurek and Ozmutlu (2018) developed an iterative two-stage algorithm to solve Murray and Chu (2015)’s FSTSP, 
which was referred to as TSPD. In the frst stage, the truck route is determined, whereas in the second stage, the drone 
tours are determined. Bouman et al. (2018) modify the Bellman-Held-Karp dynamic programming algorithm for the 
TSP to develop an exact solution approach for TSPD, whereas Poikonen et al. (2019) use a branch and bound method. 
De Freitas and Penna (2020, 2018) developed a randomized variable neighborhood descent heuristic, which modifed 
an initial TSP solution obtained from Concorde solver to solve the FSTSP. Boysen et al. (2018) focus on scheduling 
single and multiple drone deliveries launched from a truck with a fxed route. Jeong et al. (2019) modify Murray and 
Chu (2015)’s model to include the impact of payload on energy consumption and no-fy zones and propose a two-stage 
construction and search heuristic. Dayarian et al. (2020) focused on a new variant where drones are used to resupply a 
truck making deliveries. Kim and Moon (2018) study a variant termed Traveling Salesman Problem with Drone Station 
(TSPDS) where a truck is used to resupply a drone station, which is di˙erent from a depot. Multiple drones then make 
deliveries to customers from drone stations. The truck will also make deliveries to customers after supplying the drone 
station. A two-phase solution algorithm is developed, which involves determining optimal TSP for customers who can 
be served by truck only and parallel machine scheduling problem to determine customer assignment to drones. While 
there has been a signifcant body of work on integrating drones into existing routing frameworks since 2015, none of 
them consider EVs and their associated range constraints. 

Other researchers have used continuous approximation techniques to analyze UAV routing problems. Carlsson and 
Song (2018) used a continuous approximation approach to study improvements in eÿciency with using a drone with a 
traveling salesman problem framework. Based on asymptotic as well as computational analysis, the improvements 
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in eÿciency were found to be proportional to the square root of the ratio of the speeds of the truck and the UAV. 
Ferrandez et al. (2016) determined that using multiple drones per truck led to an increase in savings in energy and time 
and developed continuous approximation formulas to estimate the savings. Figliozzi (2017) compared lifecycle CO2 

emissions of drones relative to other delivery mechanisms such as diesel vans and electric trucks. UAVs were found to 
have lower lifecycle CO2 emissions per distance compared to typical diesel vans. 

Several researchers have focused on VRP variants involving drones. Dorling et al. (2016) formulated drone delivery 
problems as a multi-trip VRP. Key contributions were a linear approximation of energy consumption as a function 
of payload and a simulated annealing based solution algorithm. Wang et al. (2017) derive worst-case bounds on the 
maximum savings obtained by integrating drones into traditional truck deliveries. Ham (2018) adopt a constraint 
programming approach where multiple drones and trucks depart from a single depot. Drones can deliver as well as 
pick up while considering customer time windows. Ulmer and Thomas (2018) model deliveries using a heterogeneous 
feet of trucks and drones from a single depot and found that spatial partitioning of the delivery zones into those 
delivered by trucks and those delivered by drones are more e˙ective. Wang and Sheu (2019) studied a VRP with a 
drone variant where drones can be launched from a truck, serve multiple customers, and then return to docking hub 
from which they can be picked up by the same or di˙erent trucks. A branch-and-price formulation is developed to solve 
the mixed-integer linear program. Sacramento et al. (2019) formulated the VRP variant of FSTSP where multiple truck 
and UAV combinations are used to serve customers and solved the model using an adaptive large neighborhood search 
metaheuristic. 

In this paper, a new delivery method that deploys an electric vehicle and UAV is investigated. This new method 
combines the advantages of EVs’ with those of UAVs’, and forms an integrated route. From a modeling perspective, 
we are studying a variant of FSTSP with EV and a drone making deliveries in tandem. Unlike the FSTSP which uses 
regular trucks, we model EV and therefore the battery capacity of the truck is taken into consideration. The EV can 
also extend its range by charging at charging stations. The battery on the EV can be used by the drone for charging. 
Therefore, in our model, the truck and the drone share electricity. 

III. Problem Description and Mathematical Formulation 

The EVTSP-D is defned on an undirected, complete graph G = (V, E), with a vertex set V consisting of the customer 
set I = {v1, v2, ..., vc }, the depot v0, and a set of charging stations (CS) S = vc+1, vc+2, ..., vc+s. The vertex set is thus 
V = {v0} ∪ I ∪ S and |V | = c + s + 1. It is assumed that all charging stations have unlimited capacities. The edge set 
E = {(vi, vj ) : vi, vj ∈ V, i < j} contains the edges connecting vertices of V . Each edge (vi, vj ) is associated with two 
non-negative travel time τi j and di j , which corresponds to the travel time needed for the EV and UAV to travel from 
node i to node j, respectively. In addition, no limit is set on the number of stops that can be made for recharging. 

During recharging, we assume that the battery is charged to its full capacity every time an EV reaches a CS node. 
This represents, for example, instances when depleted batteries are swapped for fully-charged ones at stations. We further 
assume that this battery swap process happens instantly. The latter assumption can be relaxed into "full-charge-fxed 
charging-time" by adding a constant term to the CS node departure time in the MIP formulation we introduce later. This 
“full-charge"”policy assumption is commonly adopted in the literature (Erdo§an and Miller-Hooks, 2012, Conrad and 
Figliozzi, 2011), not only for simplicity of the formulation, but also because battery swapping (in few minutes) is more 
eÿcient than fast-charging (usually less than 30 minutes) and avoid the adverse impact of random charging on power 
grid operation (Ahmad et al., 2020). 

The goal of EVTSP-D is to fnd a coordinated tour that starts and ends at the depot and visits a subset of vertices 
(including charging stations when necessary) such that the total delivery time is minimized. All customers must be 
served once, either by the electric vehicle or by the UAV. At the start of the tour, all parcels are loaded into the electric 
vehicle. During the operational process, the electric vehicle can launch the UAV at a vertex and retrieve the UAV later at 
another vertex. The electric vehicle and the UAV operate independently after the UAV is launched. Note that both the 
launch vertex and retrieve vertex should be visited by the EV. 
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Figure 1 A simple representation of the EV-UAV coordinated route 

Figure 2 A simple representation of the electricity assumption 

In this work, we assume that there is only one EV and one UAV in operation at any given time. There may be 
multiple UAVs on the EV (which may be charging while another is in fight), but launching and retrieving several UAVs 
simultaneously introduces signifcant complications, both algorithmically and practically (coordinating the retrieval of 
multiple UAVs within their range limit becomes diÿcult if any of them is delayed). A similar setting can be seen in 
Wang and Sheu (2019), where special UAV hubs are constructed. 

As a result, the fnal feasible solution consists of the EV route and several non-overlapping UAV routes which start 
and end on the EV route. A simple example is shown in Figure 1, where the EV route is {0 − 1 − 3 − 5 − 6 − 0} while 
the UAV route is {1 − 2 − 3, 3 − 4 − 6}. 

We assume that the electric vehicle and the UAV share their electricity, that is, there is a limited capacity battery 
on the EV which can be used by both the EV and the UAV. For simplicity, we further assume that the UAV could be 
charged to full capacity instantly. This assumption represents, for instance, that multiple UAVs are loaded on the EV 
(although only one is in fight at any time) and can be charged, so that a fresh UAV can launch immediately after another 
UAV is retrieved. This assumption could be relaxed by adding an additional constraint separating launch nodes in the 
formulation appearing below. 

Since both vehicles share their electricity, if the UAV is launched from the EV at a customer node, the electricity 
required for the UAV route is deducted from the remaining battery level of the EV. To explain this, denote bai as the 
remaining electricity of EV upon arrival of node i and bdi as the remaining electricity of EV upon departure of node 
i. Using the network in Figure 2, assume the electric vehicle launches the UAV at node 1, travels to node 3 and 
retrieves the UAV at node 4 while the UAV serves the customer 2. If ba 

1 = 100, which indicates that EV’s remaining 
battery level upon arrival at node 1 is 100, then EV’s battery level upon departure of node 1 could be calculated as 
bd = 100 − d124 = 100 − 20 = 80, where d124 represents the required electricity of the UAV to be launched at node 1, 
serves customer 2 and returns to node 4. The battery level of the other nodes are also shown in Figure 2. Since the 
battery level of EV should be non-negative along its route, the EV may need to visit charging stations to refresh its 
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battery when necessary. It is worth noting that in EVTSP-D, the fnal solution might contain more than one visit to 
some specifc charging station nodes, while some other charging station nodes might never be visited at all. To permit 
multiple (and possibly zero) visits to the charging station nodes, while requiring exactly one visit to the customer nodes, 
graph G is augmented to create G0 = (V0, E0) with a set of s 

0 dummy vertices, Φ = {vc+s+1, vc+s+2, ..., v 0 }, one for c+s+s 
each potential visit to a charging station node. Denote V 0 as the augmented vertices set and V 0 

= V ∪ Φ. The number of 
dummy vertices associated with each charging station, ns, is set to the number of times the associated vs ∈ S can be 
visited. ns should be set as small as possible so as to reduce the augmented network size, but large enough to not restrict 
multiple benefcial visits. 

Additional notation used in formulating the EVTSP-D is defned next. 

A. Sets 

I : Set of all customers in the problem, I = {v1, v2, ..., vc } and |I | = c 
I
0 : Subset of customers that are available to UAV delivery service, I 0 ⊂ I 

S : Set of all charging stations in the original network, S = {vc+1, vc+2, ..., vc+s } and |S | = s 
S
0 : Augmented set of all charging stations, including the m copies of set S. S0 

= {vc+1, .., vc+s, vc+s+1, ..., vc+ms }

and |S0

| = ms. Note that in the augmented network each node can be visited at most once 
N : Set of all nodes in the augmented network, N = S

0

∪ C ∪ {0, c + ms + 1}, where 0 and c + ms + 1 both 
represent the depot and |N | = c + ms + 2 

N0 : Set of nodes from which a vehicle may depart in the augmented network. N0 = {v0, v1, ..., vc } ∪ S
0 

N+ : Set of nodes to which a vehicle may arrive in the augmented network. N+ = {v1, v2, ...vc } ∪ S
0

∪ {vc+ms+1}
0 0 0

N : Set of all customer nodes and charging station nodes in the augmented network. N = I ∪ S 
D : Set of tuples of the UAV’s feasible route hi, j, ki, where the UAV is launched from node i, travels to node j 

and returns to node k. D = {hi, j, ki : i ∈ N0, j ∈ C
0 
, k ∈ N+, i , j, j , k, i , k, di j + djk ≤ Qd }, where Qd 

represents the operational time limit of the UAV and di j represents the UAV’s travel time cost from node i to 
node j. 

B. Parameters 

τi j : Travel time cost for the EV to travel from node i to node j 
di j : Travel time cost for the UAV to travel from node i to node j 
di jk : Travel time cost for the UAV to launch from node i, serves node j and return to node k 
Qd : Operational time limit of the UAV, which is measured in time units 
Q : Driving time limit of the EV, which is measured in time units 
SL : Time needed to launch the UAV 
SR : Time needed to retrieve the UAV 
M : A positive large number which is an upper bound on total travel time 

C. Decision variables: 

xi j ∈ {0, 1} : Equals one if the EV travels from node i to node j and zero otherwise, where i , j and i ∈ N0, j ∈ N+ 

yi jk ∈ {0, 1} : Equals one if the UAV is launched from node i, travels to node j and returns to the EV at node k and zero 
otherwise 

pi j ∈ {0, 1} : Equals one if customer node i is visited before customer j in the EV’s path and zero otherwise 
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ui : Position of node i in the EV’s path 
ba 
i : Remaining battery charge of the EV upon arrival at node i, which is measured in time units 

bd 
i : Remaining battery charge of the EV upon departure from node i, which is measured in time units 

tj : Time when the EV arrives at node j 
0 

tj : Time when the UAV arrives at node j 

D. Mathematical Formulation 

Objective : 

min tc+ms+1 (1) 

The objective is to minimize the time when both EV and UAV return to the depot after serving all the customers. There 
are a large number of constraints in the problem, which are introduced below and interspersed with descriptions. 

ÕÕRouting Constraints: 

xi j + yi jk = 1 ∀ j ∈ I (2) 
i ∈N0 i ∈N0 k ∈N+ 

Õ 
i,j i,j hi, j,k i∈D 

x0j = 1 (3) 
Õ 
∈j N+ 

xi,c+ms+1 = 1 (4) 
Õ 

ÕÕ 
i ∈N0 

ui − u j + 1 ≤ (c + ms + 2)(1 − xi j )
0∀i ∈ N , j ∈ N+, j , i (5) 

∀ j ∈ N
0 

(6) 

Õ 
xi j = xjk 

i ∈N0 k ∈N+ 
i,j k,j 

yi jk ≤ 1 ∀i ∈ N0 (7) 
Õ 

0
j ∈C k ∈N+ Õ Õhi, j,k i∈D 

yi jk ≤ 1 ∀k ∈ N+ (8) 
i ∈N0 

0 
j ∈C 

hi, j,k i∈D ÕÕ
0

2yi jk ≤ ∀i ∈ N0, j ∈ C , k ∈ N+, hi, j, ki ∈ D (9)xhi + xlk 

h ∈N0 l ∈N0 Õh,i 
y0jk ≤ xhk 

h ∈N0 
h,k 

l,k 

∀ j ∈ C
0 
, k ∈ N+, h0, j, ki ∈ D (10) 

1 − (c + ms + 2) 
©­­­­

ª®®®® ≤ uk − ui ∀i ∈ N0, k ∈ N+, k , i (11) 
Õ 

1 − yi jk 
0 

j ∈C 
hi, j,k i∈D« ¬ 

Constraints (2)–(11) are associated with the routing of the two vehicles. In particular, constraint (2) guarantees that 
each customer node is visited once by either the EV or UAV. Constraints (3) and (4) state that the EV must start from 
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and return to the depot. Constraint (5) is a sub-tour elimination constraint for the EV. Constraint (6) indicates that if the 
EV visits node j then it must also depart from node j. Constraints (7) and (8) state that each node can launch or retrieve 
the UAV at most once. Constraint (9) ensures that if there exists a UAV route hi, j, ki, then EV should travel between i 
and k. Constraint (10) states that if the UAV is launched from the depot and returned to node k, then node k should be 
visited by the EV. Constraint (11) is a sub-tour elimination constraint for the UAV. 

Battery Constraints: 

ba 
j ≤ bi

d − τi j xi j + M(1 − xi j ) ∀i ∈ N0, j ∈ N+, i , j (12) 

ba = Q (13)0 Õ Õ 
0

bd = Q − yi jk di jk ∀i ∈ S ∪ {0, c + ms + 1} (14)i 
0 k ∈N+j ∈C 

j,i hi, j,k i∈DÕ Õ 
bd = ba − yi jk di jk ∀i ∈ I (15)i i 

0 k ∈N+j ∈C 
j,i hi, j,k i∈D 

ba ≥ 0 ∀i ∈ N (16)i 

bd ≥ 0 ∀i ∈ N (17)i 

Constraints (12)–(17) are associated with the battery electricity level. In particular, constraint (12) states that if the 
EV travels from node i to node j, then the electricity level before arriving at node j is τi j less than the electricity level 
after leaving node i, regardless whether node i, j are customer nodes or charging stations. Constraint (13) ensures that 
when EV departs from the depot it is fully charged. Constraint (14) states that if the EV departs from a charging station 
node i and there is a UAV route that starts at node i, then when EV departs from node i it is no longer fully charged and 
the UAV route electricity consumption should be deducted from full-charged battery. Constraint (15) states the same 
situation as constraint (14) except when node i is a customer. Constraint (16) and (17) ensures that the remaining battery 
charge should be non-negative. 
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0 

i 

0 

i 

Coordination Constraints: 

ÕÕ©­­­­
ª®®®® 1 − ∀i ∈ N0 (18)≥ ti − Mt yi jk 

0 k ∈N+j ∈C 
j,i hi, j,k i∈D« ¬ ©­­­­

ª ®®®® ÕÕ 
1 − ∀i ∈ N0 (19)≤ ti + Mt yi jk 

0 k ∈N+j ∈C 
j,i hi, j,k i∈D« ¬ ©­­­­

ª®®®® ÕÕ
0 

1 − ∀k ∈ N+ (20)≥ tk + Mt yi jk k 
i ∈N0 

0 
j ∈C 

i,k hi, j,k i∈D« ¬ ©­­­­
ª®®®® ÕÕ

0 
1 − ∀k ∈ N+ (21)≤ tk − Mt yi jk k 

i ∈N0 
0 

j ∈C 
i,k hi, j,k i∈DÕÕ« ¬ ÕÕ 

tk ≥ th + τhk + SL yklm + SR yi jk − M(1 − xhk ) ∀h ∈ N0, k , h (22) 
0 m∈N+ i ∈N0 

0 
l ∈C j ∈C 

hk,l,mi∈D i,kl,k hi, j,k i∈D 

Õ©­­­ yi jk 

ª®®®0 0 0

1 − (23)∀ j ∈ Ct ≥ ti + di j − M , i ∈ N0, i , jj 
k ∈N+ 

hi, j,k i∈D« ¬ Õ©­­­ ª ®®® 0 0 

j + di j + SR − M 
0

1 − (24)∀ j ∈ C , k ∈ N+, k , jt ≥ t yi jk k 
i ∈N0 

hi, j,k i∈D« ¬ 
Constraints (18)–(24) are associated with travel time of the two vehicles. In particular, constraints (18)–(21) ensure 

that the travel time and UAV range limit are correctly handled. Constraint (22) indicates that if the EV travels from node 
h to node k where h ∈ N0, k ∈ N+, its arrival time at node k must incorporate the its arrival time at node h, travel time 
from node h to node k, the UAV’s launch time at node h and retrieve time at node k. This constraint is not binding if the 
electric vehicle does not travel from node h to node k. Constraints (23) and (24) are associated with the UAV’s arrival 
time. Suppose there is a UAV route of hi, j, ki, then the UAV’s arrival time of node j and node k should be related to the 
UAV’s travel time between i and j, j and k and the UAV’s retrieve time at node k. 
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Ordering Constraints: 
0 0 0 

t − tj + di j ≤ Qd + M(1 − yi jk ) ∀k ∈ N+, j ∈ C , i ∈ N0, hi, j, ki ∈ D (25)k 

ui − u j ≤ −1 + (c + ms + 2)(1 − pi j ) ∀i, j ∈ N
0 
, i , j (26) 

pi j + pji = 1 ∀i, j ∈ N
0 
, i , j (27) ©­­­­­­­

ª ®®®®®®® 
ÕÕÕ

0 0 
3 − ∀i, l ∈ N0, k ∈ N+, i , k , l, hi, j, ki, hl, m, ni ∈ D− Mtl ≥ tk yi jk − ylmn − pil 

0 0 n∈N+j ∈C m∈C 
m,i hl,m,ni∈Dhi, j,k i∈D 
m,k n,ij,l 
m,l n,k« ¬ 

(28) 

Constraints (25)–(28) are associated with ordering the two vehicles. Constraint (25) ensures that the UAV route 
should be within the UAV’s fight range. Constraint (26) is a sub-tour elimination constraint and constraint (27) ensures 
the correct ordering of two di˙erent nodes. Constraint (28) indicates that if there exists two UAV route deliveries hi, j, ki 
and hl, m, ni and node i is visited before node l by the EV, then node l must be visited after node k. 

Domain Constraints: 

t0 = 0 (29) 
p0j = 1 ∀ j ∈ N+ (30) 
xi j ∈ {0, 1} 
yi jk ∈ {0, 1}

1 ≤ ui ≤ c + ms + 2 

∀i ∈ N0 

∀i ∈ N0 

∀i ∈ N+ 

(31) 
(32) 
(33) 

ti ≥ 0 ∀i ∈ N (34) 
0 

t ≥ 0i ∀i ∈ N (35) 
pi j ∈ {0, 1} ∀i ∈ N0, j ∈ N+, j , i (36) 

Constraints (29)–(36) specify the domain of all the decision variables. 

IV. Solution methods 

There are several complications in EVTSP-D: the electric vehicle driving range limitations, the existence of charging 
stations that can be visited multiple times or not at all and planning the UAV’s route alongside that of the EV. The 
EVTSP-D computational time via a commercial solver is usually prohibitive even for small instances. In previous 
research of FSTSP, which did not include electricity constraints, a solution time of two hours was reported to solve a 
network with ten nodes (Es Yurek and Ozmutlu, 2018). Thus, heuristics designed for EVTSP-D are necessary to solve 
a problem with practical size. In this section, an iterative three-step decomposition heuristic algorithm is presented 
to solve the proposed EVTSP-D. The proposed algorithm is a modifed version of the solution method presented in 
Es Yurek and Ozmutlu (2018), which reduces the number of combinations that need to be explored by optimizing the 
search direction. 

The heuristic algorithm works by partitioning the customer node set into two subsets - one contains all the customer 
nodes served by the EV (also called "EV nodes") and the other one contains the remaining customer nodes (also called 
"UAV nodes"), The EVTSP-D can be solved by constructing an EV route that serves all the EV nodes and optimizing 
the schedule of UAV delivery based on the constructed EV route afterwards. If the fnal integrated route satisfes all 
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the electricity constraints, then a feasible solution is found. Denote the number of EV nodes and UAV nodes as nE 

and nU , respectively, with nE + nU = c, where c is the number of customers in the network. In this way, for each 
possible value of nE and nU , the original problem is decomposed into three subproblems: an electric vehicle path 
construction problem, which is an instance of the electric vehicle traveling salesmen problem (EVTSP), a UAV node 
insertion problem, and fnal solution feasibility check problem. The fnal route cost is the route cost of EVTSP solution 
plus the additional waiting time incurred by adding UAV route into the EV’s route. 

If all three sub-problems are solved exactly, and all possible EV-UAV nodes partitions are explored, this method can 
solve EVTSP-D exactly. However, there are two major issues associated with this method: frst, the number of di˙erent 
combinations of EV nodes and UAV nodes grows exponentially with the size of the network. Second, both the EVTSP 
and UAV node insertion problems are NP-hard. To address the second issue, a heuristic algorithm is implemented to 
solve the EVTSP, so that the computational time of the frst sub-problem is not prohibitive as the network grows in 
size. However, using a heuristic for EVTSP also indicates that even if all the possible combinations are explored, the 
best-found solution may still be sub-optimal. For the frst issue, two di˙erent search strategies are explained below. 

For small instances, we can enumerate all the di˙erent combinations of EV nodes and UAV nodes. Note that the 
fnal solution may still be sub-optimal since we use a heuristic to solve the EVTSP subproblem. Since in general the 
UAV has a higher travel speed than the EV, we want the UAV to serve as many customers as possible. In theory, the 
UAV could serve all the customers as the EV travels between the charging stations, launching and retrieving the UAV. In 
this sense, the algorithm starts with searching the scenario of nE = 0, nU = c and decreasing nU gradually. In this paper, 
the algorithm adopting this searching strategy is named "full iterative search algorithm" (FIS), whose implementation is 
shown in Algorithm 1. In this algorithm, I is the set of customers in the network and |I | = c. 

However, in FIS it is not always necessary to explore the whole space of (nE, nU ). 

Theorem 1. In EVTSP-D, consider two scalar a, b ∈ N+ and a < b < c where c is the total number of customers in the 
network. Denote nE as the number of EV nodes in the integrated route, then the minimal cost of EVTSP among all the 
possible combinations when nE = a is not greater than that when nE = b. 

∗Proof. In EVTSP-D, denote p as the minimal cost of EVTSP among all the possible combinations when nE = a.a � � cLet comba denote the set containing all the combinations when nE = a and |comba | = m = , combi representsaa 
the ith combination of the set comba, and f as an EVTSP solution algorithm function that maps from a set 

∗ ∗of nodes to a real number. So p = min f (comba) = min{ f (comb1 ), f (comb2 ), ..., f (combm)}. Similarly, pa a a a b 
∗is the minimal cost of EVTSP among all the possible combinations when nE = b and p = min f (combb) = 
b� � cmin{ f (comb1 ), f (comb2 ), ..., f (combn )} and n = .

b b b b 

For every combi ∈ comba, there always exist a set of combinations {comb1 , comb2 , ...} ⊆ combb , such that every a b b 
node in combi is also included in any combination that is included in this set. Conversely, for every combi ∈ combb ,a b 
eliminating any b − a nodes in the combination would result in another combination that is included in set comba. So, 
combi always has b − a nodes less than its corresponding combinations in combb and no element in comba can be a 
"ruled out" by this correspondence. Since every combination in combb always have b − a more node than combination 
in comba, every EVTSP cost of combi is not greater than the cost of its corresponding combinations in combb . As a a 
result, the minimal cost of EVTSP under the algorithm f of all the combinations in comba is not greater than that of 
combb , regardless of what f is chosen as long as the same f is implemented across all the combinations. 

Based on Theorem 1, if at some point in the search, for a certain value of nE = a, the minimal cost of EVTSP of 
all combinations with this nE = a is greater than the best-found solution, then all the remaining combinations with 
nE ≥ a would have a greater EVTSP cost and thus a greater fnal delivery cost than the best-found solution (since the 
optimal waiting time of the second subproblem is non-negative and the fnal delivery cost is the cost of EVTSP plus the 
additional waiting time). In this case, the search could terminate immediately with a best solution. For example, for a 11 
customer case, suppose currently the algorithm’s best found solution has an objective value of 100 and we are searching 
the scenario of nE = 5, nU = 11 − 5 = 6. Denote the combination set under this scenarios as comb5. If the minimal 
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traveling time of EVTSP within the set comb5 is no less than the best-known fnal delivery time 100, then the search 
could terminate immediately. In the Algorithm 1, this process is implemented in lines 22–26. 

Algorithm 1 Heuristic with FIS 
Input: Network information 
Output: EVTSP-D feasible solution 

1: cost ←∞ 
2: route ← 0 
3: nU ← c, the number of customers in the network 
4: while nU , 0 do 
5: Create two empty sets, B and T 
6: List all customer nodes combinations with nU UAV nodes and c − nU EV nodes, add them to set B 
7: for each combination comb ∈ B do 
8: Denote the EV nodes set as combi , the set of customers served by the EV E 
9: Denote the UAV nodes set as combi = I\combi , the set of customers served by the UAV U E 
10: routeE , costE ← ConstructEVPath(combi )E 
11: Add costE into set T 
12: if costE < cost then 
13: tw, routenew ← InsertUAVNodes(routeE , combi )U 
14: costnew ← costE + tw 

15: if costnew < cost and CheckFeasibility(routenew ) == True then 
16: cost ← costnew 

17: route ← routenew 

18: end if 
19: end if 
20: end for 
21: if min{T } ≥ cost then 
22: nU ← 0 
23: else 
24: nU ← nU − 1 
25: end if 
26: end while 
27: return cost, route 

For large instances where it is computationally prohibitive to search the whole (nE, nU ) space, we instead search 
some specifc combinations that is likely to provide a "good" feasible in a partial (nE, nU ) space area. So, the algorithm 
starts searching with nE = αc where α is the fraction of total nodes where using αc nodes as EV nodes would "likely" 
to obtain "good" feasible solutions, based on experience of previous test results. Then, to search di˙erent combinations 
in the specifc (nE, nU ) space, a saving-based method is exploited, where the time-saving of each customer node is 
calculated as the time saving if the node is eliminated from the EVTSP route that contains all the customer nodes and 
we can only search a limited number of combinations that yield best savings (line 10 in Algorithm 2). In this paper, this 
approach is named as the "partial iterative search algorithm" (PIS), whose pseudocode is shown in Algorithm 2. 

In the rest of the section, a detailed explanation of the three sub-problems are presented. 

1. Solve EVTSP (ConstructEVPath) 

This sub-problem corresponds to the ConstructEVPath function in the algorithm. In this subproblem, given a 
EV node set NE and charging station node set S, the function aims to construct an EV route that visits all the EV 
nodes in NE , satisfes the EV driving range constraint while minimizing the total travel time. In this paper, a modifed 
Clarke-Wright savings algorithm (MCWS) is implemented to solve the problem. MCWS is a greedy-based maximum 
saving algorithm proposed in Erdo§an and Miller-Hooks (2012). To solve EVTSP, an augmented network should be 
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Algorithm 2 Heuristic with PIS 
Input: Network information, time limit T 
Output: EVTSP-D feasible solution 

1: cost ←∞ 
2: route ← 0 
3: routeE , costE ← ConstructEVPath(I) 
4: Calculate the potential time-saving for every customer node based on routeE 

5: Sort node of its time-saving from high to low and stored in a new set savingNode 
6: Sort integer set indexSet = {i, 0 ≤ i ≤ c} of their distance to αc from low to high 
7: i = 0 
8: while cost = ∞ and time limit is not reached do 
9: nU ← ith element of indexSet 
10: B ← a fxed length set that contains nodes combinations with greatest savings with nU UAV nodes 
11: for each combination combi ∈ B do 
12: Denote the EV nodes set as combi , the set of customers served by EV E 
13: Denote the UAV nodes set as combi = I\combi , the set of customers served by UAV U E 
14: routeE , costE ← ConstructEVPath(combi )E 
15: tw, routeN EW ← InsertUAVNodes(routeE , combi )U 
16: if CheckFeasibility(routeN EW ) == True then 
17: cost ← costE + tw 

18: route ← routeN EW 

19: end if 
20: end for 
21: i ← i + 1 
22: end while 
23: return cost, route 

constructed to ensure a single charging station could be visited multiple times. The details of MCWS are shown below: 

• Step 1: Create back-and-forth vehicle tours (v0, vi, v0) for every EV node vi ∈ NE . Add each created tour to the 
tours list. 

• Step 2: Calculate the tour duration for all tours in the tours list and check their feasibility. Place all feasible tours 
in the feasible tours list and the remainder in the infeasible tour list. 

• Step 3: For each tour in the infeasible tour list, calculate the cost of an charging station insertion between customer 
vertices vi and the depot v0, c(vi, v0) = τ(vi, v f ) + τ(v f , v0) − τ(vi, v0) for every charging station v f ∈ S. For every 
such tour, insert an charging station with the least insertion cost. If driving range constraints are met after the 
insertion of an charging station, add the resulting tour to the feasible tours list. Otherwise, discard the tour. 

• Step 4: Compute the savings associated with merging each pair of tours in the feasible tours list by identify all 
vertices that are adjacent to the depot in a tour and create a savings pair list (SPL) that includes all possible pairs 
of these vertices (vi, vj ) such that vi and vj belong to di˙erent tours. Compute the savings associated with each 
pair of vertices in the SPL, s(vi, vj ) = τ(v0, vi ) + τ(v0, vj ) − τ(vi, vj ). Rank the pairs in the SPL in decreasing 
order of savings s(vi, vj ). 

• Step 5: While SPL is not empty, select and remove the topmost pair of vertices (vi, vj ) in the SPL and merge their 
associated tours. For the merged tour, check driving range constraint. If it is satisfed, add the resulting tour to 
the feasible tours list. Otherwise, compute the insertion cost c(vi, vj ) = τ(vi, v f ) + τ(v f , vj ) − τ(vi, v0) − τ(vj, v0)
for savings pair (vi, vj ) for every charging station v f ∈ S. Insert the charging station between vi and vj with the 
least insertion cost to make the resulting tour feasible. If the fnal tour contains more than one charging station, 
consider whether it is possible to remove one or more of the charging stations from the tour and remove any 
redundant charging stations. Add the resulting tour to the feasible tours list and return to Step 4. If no tour has 
been added to the feasible tours list, stop. 

13 



2. UAV node insertion (InsertUAVNodes) 

This sub-problem corresponds to the InsertUAVNodes function in the algorithm. This sub-problem aims to insert 
the UAV node into the EV route that is constructed in the previous step while minimizing the waiting time incurred. 
The MILP formulation of this subproblem is proposed in Es Yurek and Ozmutlu (2018) and the CPLEX solver is used 
to solve the sub-problem in this paper. The details of the formulation are shown in the appendix. 

3. Final solution feasibility check (CheckFeasibility) 

This sub-problem corresponds to the CheckFeasibility function in the algorithm and aims to check if the integrated 
route satisfes all the shared electricity constraints. Although the EV’s route and UAV’s route both satisfy all the 
constraints separately, the fnal solution that incorporates both routes might be infeasible because of the shared electricity 
assumption. More specifcally, the electricity level constraint might be violated when the UAV’s routes are incorporated 
into EV’s route and the electricity consumption of UAV’s route hi, j, ki is deducted from the bd . If the fnal coordinated i 
route still satisfes the electricity constraint, the route is then stored for future comparison until the time limit is reached. 
This algorithm is shown in Algorithm 3, where a solution s is represented as an EV route rE and UAV route rU . 

Algorithm 3 Solution feasibility check 
Input: A solution s = {rE, rU }

Output: True if solution s is feasible and False otherwise 
1: for each node i in rE do 
2: j ← next(i) in rE 

3: if i is the depot and the frst node in rE then 
4: bd ← Qi 
5: else 
6: baj ← bi

d − τi j 
7: if j is the charging station node then 
8: if j is a launch node of sortie <j,m,n> then 
9: bdj ← Q − djmn 

10: else 
11: bd ← Q 
12: end if

j 

13: else 
14: if j is a launch node of sortie <j,m,n> then 
15: bd ← ba 

j j − djmn 

16: else 
17: bd ← ba 

j 
18: end if

j 

19: end if 
20: end if 
21: end for 
22: if minimal value of baj , b

d of all nodes in rE is non-negative thenj 
23: return True 
24: else 
25: return False 
26: end if 
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V. Numerical Analysis 

In numerical analysis, the proposed MILP formulation and iterative search algorithm are compared with FSTSP 
formulation and neighbourhood search heuristic. Then the proposed algorithm is tested on small randomly generated 
instances, followed by a real-world case study. In this section, all the cost and compute time are measured in seconds 
and all experiments are run on a 3.6 GHz Intel Core i7 desktop with 32 GB RAM. 

A. MILP formulation comparison 

In this section, the MILP formulation proposed in section 3 is compared to the FSTSP formulation proposed in 
Murray and Chu (2015). EVTSPD is a generalization of FSTSP when the EV has unlimited driving range and there are 
no charging stations in the network. In this case the only di˙erence between the proposed EVTSPD formulation with 
that in Murray and Chu (2015) is that the former have extra loose battery constraints and battery decision variables. 
To analyze the performance of these two formulations, tests on randomly generated instances with di˙erent sizes are 
conducted. For all the generated instances, the single depot is located at (0, 0), and the coordinates of the customer 
nodes are uniformly distributed between -10 km and 10 km. The truck travels at the speed of 40 km/h while the UAV’s 
speed is 60 km/h. The fight range of the UAV is 25 minutes. The results are shown in Table 1. In the table, |C | indicates 
the number of customers while the computational time is the average result of at least ten independent runs. Both MILP 
models are implemented in Pyomo and solved with ILOG’s CPLEX Concert Technology solver (version 12.6.3). 

Table 1 MILP formulation performance comparison 

Computational Time 
|C | FSTSP EVTSPD 
5 1.1 0.9 
6 3.6 4.6 
7 4.8 12.8 
8 33.1 136.1 
9 492.3 2057.8 
10 >7200 >7200 

As can be seen from Table 1, the computation time on instance that contains less than 6 customers of both 
formulations are very close. However, the gap appears as the instance size increases. For instances with 7, 8 and 
9 customers the EVTSPD formulation’s computational time is about three times of FSTSP formulation. Based on 
the CPLEX modelling report, the EVTSPD has about 10% more constraints and decision variables than the FSTSP 
formulation. For instances containing more than 9 customers both formulation are unable to fnd optimal result in two 
hours. 

B. Comparison between iterative search method and neighborhood search heuristic 

To evaluate and analyze the performance of the iterative search method proposed in this paper, it is compared 
with previously published variable neighborhood search (VNS) method proposed in De Freitas and Penna (2018) on 
randomly generated fying sidekick traveling salesman problem instances. The VNS method frst creates an initial 
solution using the optimal TSP solution and saving-based heuristics proposed in Murray and Chu (2015). Then a local 
search algorithm is performed to obtain the local optimum. If the obtained solution is better than the incumbent one, it 
is assigned to be the current solution and the search continues. VNS stops when no better neighbours exists for the 
current solution. Seven di˙erent neighbours are defned including reinsertion, two opt, etc. 

15 



To compare the iterative search method and VNS on FSTSP instances, randomly generated instances are tested, with 
the same setting described in the previous subsection. Besides, we set the EV’s driving range as unlimited and the 
number of charging stations as zero. Some of the unnecessary functions are also eliminated from the iterative search 
algorithm such as the function that checks truck route’s feasibility. An TSP solver replaces the MCWS algorithm to get 
the initial truck’s route. Note that by using a TSP solver, all three subproblems are solved optimally and this indicates 
that the results found by IS is also optimal. Both the iterative search and VNS methods are coded in Python. The test 
results are shown in Table 2, where the results are the average value of at least 20 independent runs and the column Std 
presents the standard deviation of the cost. 

Table 2 IS and VNS performance comparison 

VNS IS 

|C | Cost Std Compute 
Time (s) Cost Std Compute 

Time (s) 
10 4764.0 822.3 <1 4296.5 734.6 <1 
15 6244.0 693.0 <1 5744.0 695.8 4.1 
20 6852.0 668.2 <1 6180.5 711.2 22.1 
25 7603.5 540.2 <1 7422.5 525.5 30.0 
30 8497.5 706.7 <1 8491.5 896.8 53.2 

As can be seen from Table 2, the average fnal route cost of both methods are very close in general, with iterative 
search method has slightly better results. This is reasonable considering the IS is able to fnd optimal solution while for 
VNS optimality is not guaranteed. In terms of computational eÿciency the VNS dominates IS in all instances, while for 
IS a exponential growth of computational time is observed. This comparison illustrates that when the instance size is 
small, the iterative search method should be preferred over VNS heuristic. Compared to the VNS proposed in De Freitas 
and Penna (2018), the IS method can easily explore solutions with di˙erent drone nodes, while it is relatively diÿcult 
for VNS to do this as most of the defned neighbours focus more on the permutations of truck nodes. 

C. EVTSPD experiments on small instances 

This section compares the performance of the proposed heuristic algorithm on small instances with solving the 
problem via commercial solver, and illustrates the delivery time improvement of deploying UAV to deliver parcels. The 
experimental setting is described in the frst subsection, while the second one presents the computational results. 

1. Experimental Setting 

Since both the related problems of EVRP and TSP-D are introduced in recent years, benchmark instances are limited, 
and most of them are not available publicly. Because of the complexity of the TSP-D and the extra complexity incurred 
by adding the EV driving range limit constraint, the feasible instance that could be solved by a commercial solver is of 
relatively small size. According to Es Yurek and Ozmutlu (2018), commercial solvers can only obtain optimal solutions 
for instances containing up to 10 customers in 2 hours. So in this paper, we conduct the numerical analysis on randomly 
generated instances. Most of the experimental settings are adopted from previous research Murray and Chu (2015), Es 
Yurek and Ozmutlu (2018). For all the generated instances, the single depot is located at (0, 0), and the coordinates of 
the customer nodes and charging station nodes are uniformly distributed between -10 km and 10 km. The EV travels at 
the speed of 40 km/h while the UAV’s speed is 60 km/h. Besides, to test the e˙ect of the EV driving range constraint on 
the route cost, two parameter setting are tested for the 5-customer case. In the frst setting the EV has a driving time 
limit of 4000 seconds while the UAV has a driving time limit of 1200 seconds, while in the second setting EV’s driving 
range is 5400 seconds and the UAV has a fight range of 1500 seconds. For the 10-customer case, we only test the 
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second setting. The launch/retrieve time and charging time are set to zero in these instances. The distance matrix for the 
electric vehicle is calculated using the Manhattan metric, while the Euclidean metric is used for the UAV to refect its 
greater mobility options. In all the numerical experiments, the charging station set S is replicated twice in the network. 

The proposed heuristic algorithm is coded in Python while the MILP formulation is implemented in Pyomo. 

2. Computational Results 

The computational results for random instances are shown in Table 3 and Table 4. In the tables, for the case name of 
"5C2S2R01", "5C" represents that this instance includes fve di˙erent customers, "2S" represents that this instance 
contains two di˙erent charging stations, "2R" represents that the augmented network contains two copies of all the 
charging stations and "01" is the index for a specifc type of instance. As a result, in the augmented network of case 
"5C2S2R01", the actual number of nodes is 11 including the depot. Besides, denote the optimal solution and FIS 
solution as costopt and costFIS , respectively, the optimality gap shown in the table is calculated as: 

costFIS − costopt 
. 

costopt 

Note that in Table 3 the frst 10 cases adopts the frst setting (EV range = 4000s, UAV range = 1200s) while the latter ten 
cases adopts the second one (EV range = 5400s, UAV range = 1500s). In Table 4 all the 10 customer cases have EV 
range = 5400s, UAV range = 1500s. 

As can be seen from Table 3, for 5-customer instances, the average computational time of CPLEX is about 2400 
seconds while that of the FIS algorithm is less than one second. On average, the optimality gap of FIS lies between 
0.10 and 0.15. As a comparison, Murray and Chu (2015) reports an optimality gap between 0.1 and 0.37 for the 
saving-based and nearest neighbor heuristics for the instances of FSTSP. Also, note that the proposed algorithm adopts 
MCWS heuristic to solve the EVTSP subproblem, which has an optimality gap of 0.05 to 0.10 based on the numerical 
experiments reported in Erdo§an and Miller-Hooks (2012). So, our results indicate a higher optimality gap when a UAV, 
which shares the electricity with the EV, is added into the integrated route. Besides, compare the performance of FIS 
under two di˙erent settings, it is obvious that when the EV range constraint is loose such that MCWS can fnd near 
optimal EV route, the FIS can obtain near optimal result, as in cases 5C2S2R12 and 5C2S2R14 to 5C2S2R17. 

Note that even with fve customers, the problem is diÿcult to solve. The EVTSP subproblem is NP-hard; and 
even in small instances, complete enumeration is diÿcult because an arbitrary number of charging station visits can 
be inserted between customer visits, and because charging stations can be visited multiple times between di˙erent 
customers. Therefore, we use a heuristic to solve this subproblem, and optimality cannot be guaranteed for EVTSP for 
these instances. 

For 10-customer instances, CPLEX fails to fnd the optimal solution within two hours so only the results of iterative 
search method are reported here. Full iterative search takes about 80 seconds on average, which is greater than the 7 
seconds for partial iterative search.On average the obtained route cost of PIS is 15% greater than FIS. It is also noticeable 
that in some cases PIS might fail to fnd feasible solution of the problem. 

Additional tests are conducted to evaluate the improvement of the fnal solution with the assistance of UAV delivery. 
The fnal solution of EVTSP-D is compared with solving the same instance as the EVTSP. Denote costEVT SP as the 
solution cost of EVTSP, the results are shown in Table 2, in which the di˙erence gap is calculated as: 

costEVT SP − costFIS 

costFIS 

As illustrated, the utilization of UAV delivery would greatly reduce the delivery time. On average, the fnal delivery 
time of EVTSP-D is 39.17% lower than EVTSP solution for 5-customer instances and 28.55% lower for 10-customer 
instances. This improvement indicates that the logistics companies might have a great beneft by utilizing UAV deliveries 
by reducing delivery times. 
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Table 3 Computational results for 5-customer cases 

Computational Time (s) 
Optimality

costF I S Case Name CPLEX FIS costopt gap 
5C2S2R01 240 <1 4390 4950 0.127 
5C2S2R02 486 <1 4500 4890 0.087 
5C2S2R03 2103 <1 4600 5000 0.087 
5C2S2R04 2329 <1 2720 2730 0.004 
5C2S2R05 5912 <1 4140 4960 0.198 
5C2S2R06 259 <1 6460 6650 0.029 
5C2S2R07 2775 <1 2930 3760 0.284 
5C2S2R08 771 <1 4780 6350 0.328 
5C2S2R09 3038 <1 3970 4430 0.116 
5C2S2R10 6451 <1 2780 3560 0.280 
Average 2436 <1 4127 4728 0.153 
5C2S2R11 1002 <1 3480 5350 0.537 
5C2S2R12 826 <1 2620 2620 0 
5C2S2R13 5210 <1 2390 2560 0.071 
5C2S2R14 3177 <1 2540 2540 0 
5C2S2R15 1672 <1 2330 2330 0 
5C2S2R16 3235 <1 2450 2450 0 
5C2S2R17 3450 <1 2850 2850 0 
5C2S2R18 1280 <1 3120 3940 0.263 
5C2S2R19 1616 <1 2540 2780 0.094 
5C2S2R20 1823 <1 3770 4180 0.109 
Average 2329 <1 2809 3160 0.107 

18 



Table 4 Computational results for 10-customer cases 

FIS PIS 
Case Name cost time cost time Gap 
10C4S2R01 5010 84 5370 7 0.072 
10C4S2R02 2650 133 2830 8 0.068 
10C4S2R03 3940 158 5150 15 0.307 
10C4S2R04 4550 63 5490 4 0.206 
10C4S2R05 4570 75 Inf 2 N/A 
10C4S2R06 5500 25 5500 3 0 
10C4S2R07 4830 33 6750 2 0.397 
10C4S2R08 4940 37 5540 3 0.121 
10C4S2R09 4190 53 4340 7 0.036 
10C4S2R10 4870 156 5880 19 0.207 
Average 4505 81.7 5205 7 0.156 
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Table 5 Computational results for fnal delivery time comparison 

Di˙erence 
costFIS costEVT SP Case Name nUgap 

5C4S2R21 5320 5680 6.77% 3 
5C4S2R22 4510 5930 31.49% 2 
5C4S2R23 5000 8000 60.00% 2 
5C4S2R24 2030 3690 81.77% 2 
5C4S2R25 3560 Inf N/A 4 
5C4S2R26 4520 6010 32.96% 1 
5C4S2R27 3590 4790 33.43% 4 
5C4S2R28 4360 6900 58.26% 2 
5C4S2R29 4130 4800 16.22% 3 
5C4S2R30 3100 4080 31.61% 4 
Average 4012 5542 39.17% 2.7 
10C5S2R11 5320 7920 48.87% 3 
10C5S2R12 6400 7240 13.13% 7 
10C5S2R13 6490 8150 25.58% 2 
10C5S2R14 5730 7060 23.21% 7 
10C5S2R15 5690 6990 22.85% 3 
10C5S2R16 7250 9100 25.52% 4 
10C5S2R17 5270 6350 20.49% 3 
10C5S2R18 5440 7330 34.74% 3 
10C5S2R19 5410 8020 48.24% 7 
10C5S2R20 5860 7200 22.87% 7 
Average 5886 7536 28.55% 4.6 

D. Real-world case study 

A real-world case study is conducted to illustrate the e˙ectiveness of the proposed algorithm in solving EVTSP-D 
with practical size. This study also analyzes the e˙ects of several key parameters on the fnal delivery time. In this case 
study, the downtown Austin network is analyzed, which contains one depot, 25 customer nodes, and 10 charging station 
nodes. The travel time of the EV from one node to another node is estimated using the Google map Python API for 
the peak hour of a typical Monday. Thus, the resulting travel time matrix is asymmetric. In the default setting, the 
travel time of the UAV from one node to another is assumed to be half of that of the EV. We assume that all customers 
could be visited by either the EV or the UAV. The UAV has a maximum operation time of 30 minutes, and the EV has a 
driving limit of 2 hours without charging. The EV adopts a full-charge policy at each charging station, and its battery 
could be refreshed immediately (by replaced with a fully-charged battery). All the charging stations could be visited 
multiple times if necessary. There is no time window constraint associated with each customer node, so the service time 
is also ignored. The charging station set S is replicated twice in the network and the value of α is chosen as 0.4, based 
on the observation in the numerical experiment that most of the heuristic solutions has 0.4c nodes as EV nodes. The 
PIS is adopted to solve the problem and the computational time limit is 2 minutes considering the problem size. 

The fnal integrated route of the case study is shown in Figure 3. The completion delivery time is 12745 seconds 
(approximately 3.54 hours), and the fnal route consists of 15 customers being served by the UAV and ten customers 
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being served by the EV. 

Figure 3 A heuristic solution route for the real-world case study 

In the rest of this section, we study the impact of characteristics of di˙erent parameters on the performance of this 
EV-UAV delivery system, from which we will gain insights into this new mode of transportation. All the results are the 
best-found solution based on PIS with computational time of one hour. Throughout this section, denote cost as the fnal 
delivery time, nU as the number of customers served by the UAV, costEV as the travel time of electric vehicle measured 
in seconds and tw as the total waiting time during the delivery process. 

1. UAV speed 

The UAV is typically faster than the EV as it can take shortcuts without being a˙ected by ground traÿc congestion. 
The X-Wing project initiated by Google declares their delivery UAVs can reach the speed of 120 km/h when tested 
in a suburban area in Australia. This section explores the e˙ect of the relative speed ratio of UAV to EV on the fnal 
delivery cost. Denote the relative travel speed of UAV and EV as β, Table 6 provides the results for fve di˙erent relative 
speeds of UAV from β = 1 to β = 3. As expected, the delivery completion time decreases as the relative speed of 
UAV increases. When the UAV has the same speed as EV (β = 1) or The UAV has slightly higher speed than the EV 
(β = 1.5), no feasible route is found within one hour. As the UAV speed increases, the total delivery time, the EV travel 
time and the total waiting time reduces gradually. In particular, when the relative speed increases from β = 1 to β = 3, 
the resulting waiting time decreases by 86% (from 1295 seconds to 180 seconds). This result indicates that increasing 
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the UAV speed might be an e˙ective approach to reduce the risk and operational cost incurred by the waiting period 
during the delivery. 

Table 6 E˙ect of UAV speed on EVTSP-D solution 

cost nU costEV tw 

β = 1 Infeasible Infeasible Infeasible Infeasible 
β = 1.5 Infeasible Infeasible Infeasible Infeasible 
β = 2 10865 15 9570 1295 
β = 2.5 9420 15 8640 780 
β = 3 8740 15 8560 180 

2. UAV’s fight range 

A UAV’s fight range is another factor that might infuence the delivery completion time as a wider fying range 
enables delivering parcels to customers that are located further and thus increases the number of customers that could be 
served by the UAV. Research on how the UAV’s fight range a˙ects the TSPD solution and time-saving in a real-world 
case study is limited. This section flls this gap by exploring the e˙ect of the UAV fight range on the fnal feasible 
solution in the Austin network. Denote the UAV’s fight range as Qd which is measured in minutes; Table 7 presents the 
characteristics of the fnal solution with di˙erent Qd value. 

As shown in Table 7, contrary to the expectation, the delivery completion time of the feasible solution found within 
one hour increases with the UAV fight range. For example, the fnal delivery time found within one hour when the UAV 
fight range is 15 minutes is 10745 seconds while that for the UAV with 60 minutes operation limit is 11075 seconds. 
We think that this is because as the UAV fight range increases, the number of feasible branches that need to be examined 
increases, since greater UAV operation limit indicates more customer nodes could be served by the UAV. In a certain 
amount of time, the number of combinations that is explored in the algorithm decreases, and we might end up with a 
"bad" solution. 

Theoretically, given enough computational time, the best found solution with a greater UAV fight range would 
not be worse than that with low fight range. Additional tests are conducted to demonstrate this statement. Since the 
feasible solution found when Qd = c is also feasible when when Qd > c, one can start the searching procedure with the 
previously found feasible solution and check if the algorithm could fnd a better solution given a "good" starting point. 
The results are shown in Table 5. In the table, the solution when Qd = 30 uses the solution of Qd = 15 as the starting 
point. Similarly, the solution when Qd = 45 uses the solution of Qd = 30 as the starting point. The computational 
time is one hour. Based on the results, when Qd increases from 15 minutes to 30 minutes a better solution is found. 
However, the algorithm seems to stuck in a minimal point when Qd increases from 30 minutes to 60 minutes. The result 
illustrates that given a initial solution which has tighter bounds and relaxed constraint (in this case, UAV’s fight range), 
the algorithm might obtain a better (or at least no-worse) solution. 
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Table 7 E˙ect of UAV fight range on EVTSP-D solution 

Qd = 15 

cost(s)

10745 
nU 

15 
costEV (s)

8760 
tw(s)

1985 
Qd = 30 10865 15 9570 1295 
Qd = 45 10980 15 9570 1410 
Qd = 60 11075 15 9570 1505 

Table 8 Final results when using previously found solution as initial point 

Qd = 15 

cost(s)

10745 
nU 

15 
costEV (s)

8760 
tw(s)

1985 
Qd = 30 9420 15 8640 780 
Qd = 45 9420 15 8640 780 
Qd = 60 9420 15 8640 780 

3. EV’s driving range 

The driving range of EV depends on the size of the battery it carries. However, as battery size increases, the 
operational and maintenance cost also grows, so logistics companies deploying electric vehicles must make a trade-o˙ 
between these two factors. In EVTSP-D, the driving range of the EV a˙ects the fnal delivery completion time in that 
low driving range indicates EV has to visit charging stations frequently. Tighter electricity constraints also makes it 
diÿcult for the heuristic algorithm to fnd a "good" feasible solution. Denote the EV’s driving range as Q which is 
measured in hours, this section presents the result of how EV’s driving range a˙ects the solution route cost, as illustrated 
in Table 9. As presented, the fnal delivery time decreases with the EV driving range increases. When the EV driving 
range is only 1.5 hours, it has to visit the charging station frequently to refresh the battery which results in a long waiting 
time in the route. Note that in one hour, only one feasible route is found by the heuristic algorithm when Q = 1.5 hour, 
which supports the intuition that when electricity constraint is tight, it is diÿcult to even fnd a feasible solution. 

As in previous section, additional test are conducted to check if the algorithm could fnd a better solution given a 
better initial searching point. The results are shown in Table 10. As presented, the fnal delivery time decreases as we 
relax the EV driving range constraint and use a better initial point, which is di˙erent from the e˙ect of UAV fight range 
where the solution is stuck at a local point. 

Table 9 E˙ect of EV Driving Range on EVTSP-D solution 

Q = 1.5 

cost(s)

12255 
nU 

15 
costEV (s)

8570 
tw(s)

3685 
Q = 2 10865 15 9570 1295 
Q = 3 10610 15 9530 1080 
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Table 10 Final results when using previously found solution as initial point 

Q = 1.5 

cost(s)

12255 
nU 

15 
costEV (s)

8570 
tw(s)

3685 
Q = 2 9420 15 8640 780 
Q = 3 9140 15 8400 740 

VI. Conclusion 

In this paper, the mixed integer-linear programming formulation of EVTSP-D is presented, and an eÿcient iterative 
search heuristic is proposed. EVTSPD aims to fnd a coordinated EV-UAV route that minimizes total travel time and 
serves a set of customers while incorporating stops at charging stations in route plans to ensure suÿcient charge. The 
proposed formulation and solution algorithm are compared with TSPD to evaluate their performance. The results shows 
that the formulation and iterative search method are eÿcient when instance size is small. The case study on randomly 
generated instances indicates that the proposed algorithm performs well compared to exact solution methods, with 
signifcantly less computational time. besides, the real-world case study demonstrates that the proposed heuristic can 
solve the problem with practical size within a reasonable computational time. It also conducts several sensitivity analyses 
to illustrate how some key parameters a˙ect the fnal integrated route. The test results demonstrate that UAV speed 
has a major infuence on the fnal delivery time, compared to EV driving range and UAV fight range. The EVTSP-D 
formulation, along with these solution techniques, will aid organizations with EV feets in overcoming diÿculties 
that exist as a result of limited recharging infrastructure. The new delivery concept of using UAV and EV to perform 
last-mile delivery would result in fnancial and environmental benefts when considering the reduced operation cost of 
fueling and switching to UAV, which does not require a costly human pilot. Besides, the research in the newly-merged 
approach will provide intuition for the future development of a more sophisticated implementation of delivery service. 

There remain several practical challenges for UAV delivery, regarding payload capacity, safety, and public 
acceptance(Watkins et al., 2020). It also remains to be seen whether battery-swapping stations (as the type we assume) 
or fast-charging stations ultimately make more economic sense for logistics feets. As the number of customers increases, 
it will become important to consider a multi-vehicle version of the current problem, perhaps with heterogeneous EV 
and UAV range and capacity, or with alternative (non full-charge) policies. All of these should be addressed in future 
research. 
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A. MIP formulation of UAV node insertion 

This section introduces the mixed integer programming model of the UAV node insertion function in the iterative 
search algorithm. This method takes the a fxed EV’s route and a set of selected nodes as the input and seeks to serve 
these nodes by UAV and insert these sorties into the EV’s route. This formulation is originally proposed in Es Yurek 
and Ozmutlu (2018). The defnition of the indexes, sets, decision variables and parameters are described below: 
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A. Indexes 

i, j : Node 
k : Position 
p : UAV tour 

B. Sets 

C : Set of all customer nodes 
D : Set of customers that would be served by the UAV 
S : Set of all potential UAV sorties 

C. Parameters 

ds : Duration of sortie s 
fis : Binary parameter which equals 1 if sortie s starts from node i, and 0 otherwise 
ais : Binary parameter which equals 1 if sortie s serves node i, and 0 otherwise 
lis : Binary parameter which equals 1 if sortie s ends at node i, and 0 otherwise 
N : Number of customer nodes in the instance 
ti : Arrival time of the truck at node i 
mk : Node assigned to position k in the truck’s route 
rt : Current truck’s route 
{0, C + 1} : The depot set 

D. Decision variables 

xs : Binary parameter which equals 1 if sortie s is chosen in the fnal solution, and 0 otherwise 
wi : Waiting time of the truck at node i 

Objective : Õ 
min wi (1) 

j ∈C\D∪{C+1} 

The objective is to minimize the total waiting time that is incurred by adding UAV sorties to the current truck’s route. 
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s.t. Õ Õ 
{ds lis xs − (ti lis xs − tj fjs xs )} ≤ wi ∀i ∈ C \ D ∪ {C + 1} (2) 

s ∈S j ∈C\D∪{0} Õ 
ais xs = 1 ∀i ∈ D (3) 

s ∈SÕ 
fis xs ≤ 1 ∀i ∈ C \ D ∪ {0} (4) 

s ∈SÕ 
lis xs ≤ 1 ∀i ∈ C \ D ∪ {C + 1} (5) 

s ∈S !Õ Õ Õ 
fmk s xs + lmk s xs − 2 1 − fmi s lm j s xs ≤ 0 ∀i = 0, 1, ..n − 1, j = i + 2, ..., C + 1, i ≤ k ≤ j, i , j (6) 

s ∈S s ∈S s ∈S 

xs ∈ {0, 1} s ∈ S (7) 
wi ≥ 0 i ∈ C \ D ∪ {C + 1} (8) 

Constraint (2) specifes that when the truck waits for the UAV then the waiting time is incurred. Constraint (3), (4) 
and (5) indicate that every node can only be launch node, UAV node and retrieve node for at most one sortie, respectively. 
Constraint (6) indicates that the UAV cannot be re-launched before it is retrieved. Constraint (7) and (8) specifes the 
domain of the decision variables. 
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